General Traits
Audiometric Traits
General Traits
Below are rough estimates for general traits of hyperacusis. These are taken from surveys conducted during hyperacusis studies. Keep in mind sample sizes are small and definitions can be unclear. Prevalence estimates for general and musician populations will be larger than the population severe enough to seek treatment.
Trait | Description | Sample Size | Reference |
Hyperacusis Prevalence | Unknown. One estimate is 1.75% of general population. | NA | Jastreboff 2014 |
Average Age | 43.5 years (Compare with 57 years for tinnitus) | 381 | Sheldrake 2015 |
Age vs Severity | Severe patients younger than moderate/mild patients | 197 | Dauman 2005 |
Laterality | 80% in both ears (Not always symmetrical) | 333 | Anari 1999, Juris 2013, Westcott 2013 |
Onset | 54% Sudden 31% Gradual 15% Don’t Know |
157 | Anari 1999, Juris 2013 |
Pain | 71.5% seeking treatment reported pain from sound | 162 | Anari 1999, Juris 2013 |
Tinnitus | 84% develop tinnitus | 336 | Anari 1999, Juris 2013, Westcott 2013 |
Normal Hearing | 37% had <20dB hearing loss up to 8kHz | 481 | Anari 1999, Sheldrake 2015 |
Caused by sound exposure | 51% Reported (small study) | 100 | Anari 1999 |
Musician Prevalence in Hyperacusis Population | 31% surveyed were musicians (small study). See Musicians | 100 | Anari 1999 |
Hyperacusis Prevalence in Musician Population | 39% self reported in Jazz/Rock Musicians (small study). See Musicians | 139 | Kaharit 2003 |
Most common sound types to trigger negative reaction | 89% Rattling of dishes 86% Child crying |
162 | Anari 1999, Juris 2013 |
Audiometric Traits
Audiologists have several tools to help diagnose auditory disorders however they can involve sound levels above the loudness tolerance of someone with hyperacusis. Inexperienced audiologists may try to run the standard array of tests without knowledge of loudness discomfort levels. For example, while acoustic reflex threshold tests can identify a less common cause of hyperacusis, the test is very loud and should not be performed without consideration of loudness discomfort levels.
Typical Test Sound Levels
Below are some typical levels for common tests. Ask your audiologist to compare the specific sound level of tests performed with your LDLs beforehand.
Test | Sound Level |
Acoustic Reflex Thresholds | 85dB-100dB |
Tone Decay | 85dB-100dB |
Auditory Brainstem Response | 70dB-90dB |
TOAE | 80dB-90dB |
DPOAE | 60dB-70dB |
Below is a summary of average results for hyperacusis patients (Anari 1999, Sheldrake 2015):
Test Name | Test Description | Average Results |
Loudness Discomfort Level (LDL) | Maximum comfortable sound level | 75dB – 85dB Avg (90% show LDLs below 100dB).Similar level across full frequency range tested (up to 8 kHz).Similar level in both ears |
Hearing Thresholds | Minimum detectable sound level | Normal |
Acoustic Reflex Threshods (ART) | Sound level that triggers middle ear muscle contraction | Normal* |
Distortion Product Otoacoustic Emissions (DPOAE) | Outer Hair Cell Function | Normal** |
Transient Evoked Otoacoustic Emissions (TEOAE) | Outer Hair Cell Function | Normal |
Speech Discrimination in Noise | Hidden hearing loss/auditory processing measure | Normal |
Tone Decay | Neural hearing loss measure | Normal |
*ART is high or absent for a less common case of hyperacusis that is caused by a loss of acoustic reflex function. This test is loud.
**DPOAE studies with hyperacusis patients are sparse. Abnormal average DPOAE were found in two studies but the results of the two were not consistent with each other (Bartnik 2009, Sztuka 2009). In either case, there was significant overlap with normal DPOAE levels. As a result, these measurements are not used for diagnosing hyperacusis.
Lowered loudness discomfort levels (LDLs) are the primary quantitative indicator for hyperacusis. This alone has not been found to be sufficient for clinical diagnosis. Hyperacusis questionnaires have been developed to help quantify several dimensions of decreased sound tolerance and hyperacusis that cannot be captured from an LDL test.
Have ideas on how to make this article better? Please contact improve@hyperacusisfocus.org.
References
Anari M, Axelsson Alf, Eliasson A, Magnusson L. Hypersensitivity to Sound: Questionnaire data, audiometry and classification. Scand Audiol 1999:28:219-230
Bartnik G, Hawley M, Rogowski M, Raj-Koziak D, Fabijanska A, Formby C. Distortion Product Otoacoustic Emission Levels and input/output-growth functions in normal-hearing individuals with tinnitus and/or hyperacusis. Otolaryngolia Polska 2009:63:171-181.
Dauman R, Bouscau-Faur F. Assessment and amelioration of hyperacusis in tinnitus patients. Acta Oto-Laryngologia 2005:125:503-509.
Jastreboff P, Jastreboff M. Treatments for Decreased Sound Tolerance (Hyperacusis and Misophonia). Seminars in Hearing 2014:35(2):105-120.
Juris L. Hyperacusis: Clinical Studies and Effect of Cognitive Behavioral Therapy. Uppsala Dissertations from the Faculty of Medicine 2013:934:1-64.
Kähärit K, Zachau G, Eklöf M, Sandsjö L, Möller C. Assessment of hearing and hearing disorders in rock/jazz musicians. Int J Audiol. 2003:42(5):279-288.
Khalfa S, Veuillet E, Grima F, Bazin F, Collet L. Hyperacusis Assessment: Relationships with tinnitus Proceedings of the sixth international tinnitus seminar Cambridge UK 1999.
Sheldrake J, Diehl P, Schaette R. Audiometric characteristics of hyperacusis patients. Frontiers in Neurology 2015:6(105):1-7.
Sztuka A, Pospiech L, Gawron W. DPOAE in estimation of the function of the cochlea in tinnitus patients with normal hearing. Auris Nasus Larynx 2009:37:55-60.
Westcott M et. al. Tonic tensor tympani syndrome in tinnitus and hyperacusis patients: A multi-clinic prevalence study. Noise & Health 2013:15:117-128.